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 A. Open resonators
 

Lasers are optical resonators mainly made of three basic elements : 
 A light amplifying medium 
 A pumping system 
 A resonant cavity 

The first  two points are described in details in another part  of the « source » module (« laser : basic 
principles »). The point of the present course is to deal with the third element to explain how a resonant 
cavity can impact the properties of laser beams. 
 

 1. Description and interest of open resonators

 a) Introduction

The role of the laser cavity is to allow the oscillation of the optical wave, generally between two mirrors, 
so that this wave is amplified at each pass through the amplifying medium inside the cavity. The cavity is 
also used to extract the useful laser beam through the only partially reflecting outcoupling mirror. Finally, 
the geometry of the cavity specifies the spatial and spectral characteristics of the laser radiation. 

 b) Why is an open resonator useful ?

The most simple resonator is a parallelepipedic metallic box (each face is a metallic mirror). In such a 
cavity,  a  given number  of  modes  could  oscillate,  and  those modes  are  determined  by the  boundary 
conditions for the wavevectors on the faces of the box (each mode is associated with a wavevector k mnq  
with k x=m/a ,  k y=n/b ,  k z=q/d  and a ,b ,d ,  the dimensions of the box). 
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Let us consider an amplifying medium in such a cavity : the modes will oscillate and amplification will 
take place. However, the number of oscillating modes (in the amplifying medium spectral bandwidth) has 
to remain low to produce a coherent radiation. 
The calculation of the number of modes in this bandwidth  shows that it is proportional to the cavity 
volume and inversely proportional to the square of the wavelength. Numerically, if the wavelength is in 
the microwave domain (10 cm), we found that about 10 modes could oscillate in a 1 GHz bandwidth for a 
10 cm large cubic cavity. Nevertheless, if the wavelength is in the optical range (around 1 µm), as many 
as 1011 modes could oscillate in the same cavity ! 
This is the reason why such closed resonators are well-tailored for MASERS (Microwave Amplification 
by Stimulated  Emission  of  Radiation)  but  cannot  be  used  with visible  light  :  too many modes  will 
oscillate, or in other terms a quasi-monomode operation will require a very small cavity (around 1 µm). 
 

Remarque 
With the current  technology,  such a microcavity is possible – which was not  the case in the sixties. 
However, the amplifying medium is then so small that no powerful laser sources could be considered. 
 

Consequently, one has to modify the resonator geometry : the idea proposed and developed among others 
by Schallow and Townes in the fifties is to use a quasi-linear resonator where oscillation is possible only 
along a single axis : this kind of « open resonator » is in its simplest form composed of two spherical or 
flat mirrors facing each other in a Fabry-Pérot interferometer configuration. 
In a first approach, the modes of this resonator are similar to the closed cavity ones with d>>a, b. Such a 
Fabry Pérot structure considerably reduces the number of oscillating modes : every optical ray having an 
important  angle  with  respect  to  the  cavity  axis  will  rapidly  escape.  However,  in  a  Fabry  Perot 
configuration, the facing flat mirrors have to be perfectly parallel to avoid that all the rays escape the 
cavity  after  a  few round-trips.  To  ensure  efficient  laser  operation  (and to  allow spatial  and spectral 
filtering), some rays have to stay in the cavity long enough : stable cavities are needed (we will come 
back to this concept later). 

 c) Some optical resonators

The simplest optical cavity is a linear cavity composed of two facing mirrors separated by a distance d. 
The curvature radii are R1 and R2 , and the diameters D1 et D2 (see figure 1). In this kind of optical cavity, 
a  stationary wave  takes  place  between the  mirrors.  Some  optical  elements  (lenses,  polarisers,  active 
components...) could eventually be inserted inside the cavity. We will call « passive cavity » the optical 
cavity without the amplifying medium, whereas the « active cavity » will include the amplifying medium. 
 

 

 Figure 1 : linear (left) and ring (right) optical cavities 
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Remarque 
A key parameter is the optical path [d] for a roundtrip inside the cavity. This optical path is the product of 
the distance and the refractive index seen by the optical beam. 
 

 

Remarque 
Another well-known cavity type is the ring cavity, where the light does not form a stationary wave but a 
progressive one. In this text, we will only deal with linear cavities, but the principles and methods are 
applicable for every resonator. 
 

 2. Longitudinal and transverse modes

We can define the open resonator modes by using the expressions found for closed resonators : in the case 
of a parallelepipedic cavity (the sides of the box have a length a, b and c respectively), the mnq  resonant 
frequencies are given by : 
 
 

 
 

where c is the speed of light in vacuum and m,n , q are integers.. 
In the case of an open resonator, d>>(a,b) and if we take a=b to simplify the formula , we obtain : 
 
 

 
 

or after a Taylor expansion 
 
 

 
 

This expression gives the TEMmnqmodes frequencies. 
 The frequencies of the longitudinal modes (TEM00q.) are (see figure 2).: 

q=q c
2d  (this type of mode are also sometimes called “spectral modes”) 
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The spectral interval between two longitudinal modes is consequently q=c /2d  , that is 1.5 Ghz for 
L=10 cm fréquentiel de 1,5 Ghz.
 

Définition 
A  laser  with  a  single  well-defined  frequency  (corresponding  to  a  given  value  of  q)  is  a  “single-
longitudinal-  mode  laser”  :  only  one  longitudinal  mode  could  oscillate,  and  the  laser  consequently 
exhibits a high spectral purity (and then an important coherence length) 
 

 The transverse mode are the TEMmnq modes with m and/or n non equal to zero (and generally 
inferior to 10, because the main goal of an open resonator is to keep the number of oscillating 
modes small.) 

 

Définition 
In a “single-transverse-mode laser”, only the TEM00q modes oscillate. 
 

The spectral interval between two transverse modes (n and q fixed) is : 
 
 

 
 

The spectral repartition of the longitudinal and the first transverse modes is given in the figure 2. 
 

Remarque 
Those results are correct in the plane-wave approximation. We will see later that the expressions have to 
be modified in the case of Gaussian beams. 
 

 

 Figure 2 : longitudinal and transverse modes in a resonant cavity. 

m=2m1 cd
4qa2
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Exemple : Example : Orders of magnitude and numerical examples.
 

 

What is the spectral width of a (slightly) multimode laser ? And what about a single-mode one ? 
Let L be the length of a given optical cavity. The gap between two consecutive modes is c/(2L), that is 1 
Ghz if L=15 cm. If we assume that 5 modes are allowed to oscillate (see figure 3), we obtain a spectral 
width of 5 Ghz (or 17 pm in terms of wavelength). This is gap is too small to be detected by classical 
spectrometers, and the laser appears to be monochromatic (even it is not strictly single-mode) 
For some applications (metrology...), very narrow laser spectra are needed : it is then possible to force the 
single-mode behaviour (for  example  by lowering the losses for  only one of the modes) The spectral 
bandwidth is then the natural width of a single laser line, which depends of the nature of the laser medium 
(gas, solid...) : the order of magnitude could vary from a few Hz to several MHz. 
 

 B. Stability
 

We will  describe  here  a  simple  approach based on geometric  optics,  before  following a more  exact 
description based on Maxwell equations (see the paragraph about gaussian beams). 
For the sake of clarity, we will consider here only passive cavities : the real cavity could generally be 
considered as a passive one with some reasonable hypothesis (for example, the thermal effects caused by 
pump heating inside a laser  crystal  can be simulated with a simple  lens).  As usual in the context of 
geometric optics, the light propagation is described in terms of “rays”, defined at each point of a given 
wave as the direction normal to the wavefront. This is also the energy direction (Poynting vector). Finally, 

 Figure 3 : Spectral repartition of the longitudinal modes for a given laser. 
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we will only consider centred systems with axial symmetry : the majority of the real cavities are of that 
kind, at least in a first order approach. We will work with paraxial rays, that is all the rays that are nearly 
parallel to the optical axis. 
 

 1. Periodical structure of laser cavities

Let us consider the cavity described in figure 1. An optical ray bouncing back and forth in this cavity 
could be “unfolded” along the z axis. In other words, the light trajectory could be seen as a series of one-
way paths from M1 to M2 then from M2 to M1 etc. To do that, we only need to replace the mirrors (with 
radii of curvature Ri) by lenses (with focal lengths fi=Ri/2 – see a basic course about ray optics) 
The structure equivalent to a two-mirrors linear cavity is then a periodic structure made of a series of 
lenses spaced by the distance d (see figure 4) 
 

 

We can then intuitively figure out what is the stability of the cavity : if after passing through the series of 
lenses the rays remain in the vicinity of the optical axis, the cavity will be stable. If not, the cavity will be 
unstable. 

 2. Transfer matrices and ABCD law

 a) Introduction

Even if obtaining an efficient laser with unstable cavities is possible in some special cases (see later), it is 
generally more favourable to have a stable resonator. The theoretical study of the stability is the first step 

 Figure 4 : Unfolded cavity 
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before designing any laser cavity (choice of the curvature radii, size of the cavity...). 

 b) The transfer matrices

The study of the resonator stability is made through the use of so-called “transfer matrices” (or ABCD 
matrices) 
The  principle  of  this  method  is  the  following  :  each  optical  element  (lens,  mirror,  or  even  simple 
propagation  into  any  kind  of  media,  including  air)  is  associated  with  a  specific  2x2  matrix.  The 
propagation characteristics could then be obtained very simply by multiplying the basic matrices. 
Let's consider a beam propagating in the yOz plane, Oz being the cavity axis. In this plane, a given ray is 
characterized by its y-coordinate for z=0 (h) and by the slope   between the direction of the ray and the 
z axis (see figure 5). 
 

 

In the Gauss conditions, the relations between h1,1  before a given optical system and h2,2 after 
passing through this system are linear, and could be expressed in a matrix form : 
 
 

 
 

where the diagonal elements have no dimension, B and C being respectively a length and the inverse of a 
length. 

The matrix T=A B
C D  fully characterise the optical system 

We will then give the basic ABCD matrices for some very useful elements, and show how to get the 
ABCD matrix of the full system from these elements. 

 Figure 5 : definition of the parameters used in the text 

h1

1=A B
C Dh2

2

11



Lesson

 Propagation over a distance d 

T=1 d
0 1  The demonstration is straightforward (see figure 5) : 

h2=h1d 2et 2=1  (because the rays are paraxial, we can assume tan x =x) 

If we develop the matrix relation given above, we obtain : 
h1=Ah2B2

1=Ch2D2
 

We can then deduce by identification  : A =1, B=d, C=0 et D=1.
We will not demonstrate the other relations (the argument is exactly the same) : this is a good exercise ! 

 Propagation over a distance d in a medium (index of refraction n) 
 
 

 
 

 flat diopter between two media (refractive indexes n1 and n2 )
 
 

 
 

 Thin lens (focal length f) 
 
 

 
 

 Mirror (radius of curvature R) 
 
 

 
 

We find again here the equivalence between a mirror and a lens with R=2f (see above). 
 

Attention 
Generally speaking, for an optical system S made of N systems in a row ( S i (i=1,2,,,,N)) , each of them 
being characterized by a matrix Ti, the matrix T corresponding to the whole system S is the product of the 
matrices of each element, in the reverse order : T= TN...Ti...T3T2T1 
The matrices do not commute, so the order is really important ! 
We will see in the C paragraph that this method could be used not only with geometric optics, but also 
with Gaussian beams. 
 

 

Remarque 
Some laser cavities use astigmatic components (off-axis spherical mirrors, Brewster plates, cylindrical 
lenses, prisms...) : in this case, the calculation has to be done for each orthogonal direction (x and y), 

T=1 d
n

0 1 
T=1 0

0
n1

n2


T= 1 0

− 1
f

1
T= 1 0

− 2
R

1
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because the matrices are not the same for x and y ! 
 

 c) ABCD law

The ABCD law describes the propagation of a spherical wave through an optical system. 
Let's consider a spherical wave with its origin at O1, and a radius of curvature R1 at the entrance of a 
given optical system. This wave converges toward the point O2 after the system, with a radius R2 . We 
will take R>0 for diverging waves and R<0 for converging ones. 
With this convention, R1≈h1/1  et R2≈h2/2  (see figure 6)
 

 

We can thus deduce from the definition of the ABCD matrix : 
 
 

 
 

This relation is very important. We will see that it can be also applied to complex radii of curvature 
(see the chapter dealing with Gaussian beams) 

 3. Resonator stability

 a) General study

Let's study a cavity with a periodic structure of optical elements as described before. Its transfer matrix is 

T=A B
C D  

For n periods, that is n round trips inside the cavity, the transfer matrix is Tn. If we write p0=h0

0  the 

vector representing an optical  ray at  the entrance of a period,  and  pn=hn

n  the exit  vector,  then , 

pn=Tn . p0  
T can be diagonalized , and if P is the transition matrix and xi the eigenvectors of T, we can show that 

 Figure 6 : Parameters used to demonstrate the ABCD law 

math  :   math  :   (ABCD law) 

R2=
AR1B
CR1D
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T=Px1 0
0 x2P−1

 (see a course on linear algebra). 

We can then deduce that 
 
 

 
 

    The resonator is stable if the rays stay in the vicinity of the optical axis during the propagation when n 
goes to infinity. In other words, pn must have an upper bound, that is ∣x1∣1  and ∣x2∣1 .
In addition, the eigenvalues x1 and x2 verify the following relations : 
 
 

 
 

 
 

 
 

  As x1 is a priori a complex number, we write x1=∣x1∣e
i  and consequently x2=∣x1∣

−1e−i  

Then, as ∣x1∣1et∣x2∣1 , we must have ∣x1∣=∣x2∣=1 . Finally, the relation with the matrix trace leads 
to 2cos=AD .
We deduce from this the stability condition, applicable to any resonator : 
 
 

 
 

or
 
 

 
 

 

Définition 
A resonator is stable when its ABCD coefficients verify the above condition. 
 

 b) Application

Let's d be the length of a simple two-mirrors linear resonator (radii of curvature R1 and R2). This resonator 
is equivalent to a periodic sequence made of two thin lenses with focal lengthes equal to f1 (=R1/2) and f2 

(=R2/2), spaced by a distance d. 
The T transfer matrix is (see figure 4): 
 
 

 
 

it is then easy to show that 
 

pn=Px1
n 0

0 x2
nP−1 p0

x1 x2=∣T∣=1

x1 x2=Trace T =AD

−1≤ AD
2
≤1

0≤ AD2
4

≤1

T= 1 0
−1
f 1

11 d
0 1 1 0

−1
f 2

11 d
0 1= 1− d

f 2
d 2− d

f 2


−1
f 1
−

1
f 2


d
f 1 f 2

1− d
f 1
1− d

f 2
−

d
f 1

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We classically use the notation  g i=1−d /R i  and then obtain  the stability  condition for any two-
mirrors linear resonator : 
 
 

 
 

This relation is often drawn on a diagram representing the g2(g1) space, that is with g2 as y-axis and g1 as 
x-axis (figure 7). 
 

 

The stability condition is then figured by two hyperboles, and the stability zones are hatched in pale blue 
on figure 7. 
Some special cases have to be noticed : 

 Right on the hyperbole g1g2=1 : we have then d=R1+R2, and the resonator is “concentric” 
 The straight lines g1=1 et g2=1 correspond to resonators with one plane mirror (infinite radius of 

curvature).  The  Fabry-Pérot  (plano-plano  cavity,  that  is  two  plane  mirrors)  is  obtained  for 
g1=g2=1. 

 For R1 = R2 =d (g1 = g2 = 0), the resonator is “confocal”. 

 Figure 7 : stability condition for a two-mirrors linear resonator and some classical resonators. 

AD2
4

=1− d
R1
1− d

R2


0≤g1 g2≤1
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Remarque 
There is a simple graphical method to know if a 2-mirrors resonator is stable or not : the point is to check 
if  two circles (with diameter  R1 and R2 respectively)  centred on the  focal  points  F1 and F2 have an 
intersection (see figure 8). If they do, the cavity is stable. Moreover, the circles intersection gives the 
position of the waist and the Rayleigh length (those two parameters will  be defined in an upcoming 
paragraph) 
 

 
 

 c) Unstable resonators

A stable resonator is not a necessary condition to make a laser. In some case, if the laser medium exhibits 
a gain coefficient high enough to allow a high level of losses, unstable resonators can even be very useful. 
This is for example the case with very high power lasers. 
 

 Figure 8 : Graphical method to check the stability 
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The main advantage of such resonators is that the mode volume in the cavity can be large, which leads to 
low power densities on the mirrors (for high power lasers, the damage threshold of the mirrors could be 
easily reached). Moreover, the transverse modes undergo a high level of losses in an unstable resonator, 
leading to a natural transverse single-mode operation of the laser. 
Those type of resonators are only possible with very high gain systems, because a given ray passes only a 
few times inside the amplifying medium before escaping from the cavity. 

 C. Gaussian beams

 1. Paraxial wave equation and spherical wave.

Any electromagnetic wave propagating inside an homogeneous medium verifies the Maxwell's equations. 
A direct consequence is that in an isotropic medium the propagation equation is as follows : 
 
 

 
 

If  we  consider  the  propagation  of  a  monochromatic  electromagnetic  radiation  with  a  frequency 
=/2 , we can write this equation in a different manner and show that the wave must verify the 

Helmholtz equation : 
 
 

 
 

where k=/c  is the wavevector. 

 Figure 9 : An example of hemispheric unstable resonator 

E− 1
c2
∂2 E
∂ t 2 =0

E  x , y , zk 2 E x , y , z =0
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This equation have a very well-known solution : the diverging spherical wave, which can be written : 
 
 

 
 

where the source is located at (x,y,z) = (0,0,0) and r is the distance from the origin. 
In the paraxial approximation framework, we assume that the wave propagation is along a specific axis 
(z-axis). In this case, we can use the following Taylor development : 
 
 

 
 

The electric field for the position r is then : 
 
 

 
 

It  represents the field for  a “paraxial  spherical  wave”,  which is  only an approximate  solution of the 
Helmholtz  equation.  We  can  recognize  the  propagation  factor  exp{-ikz}  as  well  as  the  transverse 
variation of the amplitude : 
 
 

 
 

From a mathematical point of view, the spherical wave is a solution of the propagation equation. From a 
physical point of view, the paraxial spherical wave is an acceptable approximate solution to describe the 
wave propagation. 
However, in our case (that is, for lasers), this wave is not a convenient solution : the energy spreads out in 
all  directions,  and when we isolate  the  paraxial  part  a  great  amount  of  energy is  lost,  which is  not 
compatible  to  efficient  laser  operation.  Indeed,  the  electromagnetic  field  structure  inside  an  optical 
resonator should ideally verify the following conditions : 

 Verify the Maxwell's equations 
 The field amplitude should decrease when the distance relative to the cavity axis increase, to take 

into consideration the finite dimensions of the mirrors and of the gain medium. 
 The wavefront must fit to the radius of curvature of the mirrors (this condition exclude plane 

waves)
We will now describe the solutions that are well-adapted to laser resonators. 

 2. Spherical Gaussian wave

We will now introduce here a generalization for the solutions of the Helmoltz equation. The physical 
signification of those solution will be explain afterwards. 
For the solutions of the Helmholtz equation corresponding to paraxial beams along the z-direction, we 
can write : 
 
 

E x , y , z =
E0

r
exp−i k r 

r= x2 y2z2≈ z x2 y2

2z

E paraxial x , y , z =
E0

z
e −i k z e

−i k x2 y2

2z


1
z

e
−i k x2 y2

2z


E x , y , z = x , y , z e−ikz
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where  x , y , z  is  a  complex  function  representing  the  difference  between  a  laser  beam ansd  an 
homogeneous plane wave. 
If we replace this solution in the Helmholtz equation, with the additionnal hypothesis that the variations 
of   x , y , z  in  the  z-direction  are  small  over  a  distance  comparable  to  the  wavelength  (that  is 

∣∂
∂ z
∣≪∣∣  and ∣∂

2
∂ z2 ∣≪∣

∂
∂ z
∣  ), we can write the paraxial wave equation in the following form 

: 
 
 

 
 

 

Remarque 
This equation is similar to the Schrödinger wave equation describing a free particule in a 2D space (just 
replace the time t by the spatial coordinate z). 
 

The solution of the paraxial wave equation are well-known. We can thus easily check that the following 
function (among others) is a solution : 
 
 

 
 

with :
  z  is a complex phase difference. 
 q(z) represents a complex radius of curvature, or in other words the transverse variation of the 

amplitude and the wavefront curvature. 
This specific solution, called “fundamental Gaussian mode”, is actually the most important for laser 
resonators. We will study later this mode more specifically. 
By substituting the expression for   x , y , z  in the paraxial  wave equation, we obtain that for  any 
(x,y) : 
 
 

 
 

We deduce then that q(z) and  z  must verify : 
 
 

 
 

 
 

 
 

If we write 
1

q  z 
= 1

R z 
−i 
w2 z 

 

Then
 

∂2
∂ x2

∂2
∂ y2−2ik ∂

∂ z
=0

 x , y , z =e
−i [z  k

2q z x
2 y2]

[ k
2

q2 x
2 y2 dq

dz
−1−2k  d 

dz
 i

q
]=0

dq
dz
=1 ⇒ q  z =q0z avec q0=q 0

d 
dz

=−i
q
⇒  z =−i ln 

q0z
q0

 si 0=0
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where the “0” indexes correspond to the values for z=0. If we choose the origin so that the curvature 

radius is infinite (plane wave) at this point, we have q0=i
w 0

2


. We can then easily show that : 

 
 

 
 

After identification of this relation with 
1
R
−i 
w2  z 

we conclude that : 

 
 

 
 

 
 

 
 

Moreover : 
 
 

 
 

 

Fondamental 
Finally, if we gather all those equations, we get the fundamental expression of the spherical Gaussian 
wave : 
 
 

 
 
 

with :
 K/w(z) is a normalization factor 
 the first exponential function is the propagation factor 
 the second exponential function is a phase difference sometimes called « Guoy » phase shift 
 the third exponential function could be broken up in a “spherical wave” factor and a “Gaussian” 

factor, by replacing q with its expression as a function of R : 
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where we have used cylindrical coordinates (r²=x² + y²). 
Here we see the Gaussain shape of the transverse profile of the wave for any z position. The intensity 
profile (proportional to the square of the field amplitude) is then (see figure 10) : 
 
 

 
 

 

 

 R z = z[1w0
2

 z 
2]  is the radius of curvature of the wavefront at the z abscissa. 

 w  z =w01  z
w0

2
2

 is a measure of the Gaussian decrease of the field amplitude with the 

distance relative to the z-axis (see figure 10).  The parameter w is the distance for which the 
amplitude is equal to 1/e times (1/e² if we consider the intensity) its value for (x,y) = (0,0) 

 

Définition 
w is minimal when z=0, where the radius of curvature is infinite. Its value at the origin is written w0 and 
defines the “waist” of the beam. 
 

 

Définition 

 Z R=
w0

2


 is a very convenient parameter called “Rayleigh length” and is related to the beam 

divergence (see later). 
 

We also remind the following relations : 

 q=q0 zand 1
q
= 1

R
−i 
w2  

 Figure 10 : Gaussian profile for the intensity 

I r , z =I 0  z e
−2r2

w2 z 
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Définition 

 tan=  z
w0

2  and  z   is the Guoy phase shift. 
 

 This phase difference means that the phase of the Gaussian wave is shifted by a quantity  z   
on the z-axis relatively to a plane wave of the same wavelength that have left the z=0 point at the 
same moment. The wave undergoes a global phase shift of  when passing through z=0. 

 3. Physical properties of Gaussian beams

The main basic expressions related to Gaussian beams were mathematically obtained in the previous 
paragraph. We will now describe their physical signification. 
Let's take again the origin at the waist position w0,  corresponding to a plane wave (infinite radius of 
curvature). We have defined the Rayleigh length : Z R=w0

2/  .
We also wrote the equation describing the evolution of w versus z : 
 
 

 
 

w(z) is an hyperbola (we could also write the previous relation : 
w2

w0
2−

z2

Z R
2=1 ).

 a) Main useful parameters

Let us remind the main parameters and results previously described : 
 w(z)  is  the  dimension  of  the  laser  spot  (the  “radius”  if  the  spot  is  circular)  in  the  plane 

perpendicular to the propagation, at a distance z from the origin. Precisely, it is the radius (at 1/e 
for the amplitude, or 1/e² for the intensity) of the transverse Gaussian profile at the z abscissa. 

 
 

 
 

 When z increases, the beam expands in the transverse direction while its amplitude on the z-axis 
decrease (energy conservation). The profile shape remains Gaussian. 

 The size of the beam at the origin, w0, is minimal : the beam will diverge from this point (see 
figure 11). This minimal dimension is called “beam waist” (the waist is the radius of the spot. 
The diameter is of course given by 2 w0). 

 At the waist, the wavefront is a plane. 

w  z =w01 z
Z R

2

I r , z =I 0  z e
−2r2

w2 z 
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 The  beam  divergence  is  given  by  the  limit  of  w/z  when  z  goes  to  infinity  : 

lim z∞
w
z
=

w0

Z R
= 
w0

= tan  or for a small divergence tan= 
w0

≈  

 The Gaussian characteristics of the beam are essentially important in the vicinity of the beam 
waist. Indeed, when z increases, the complex radius of curvature becomes close to R and the 
wave could be considered spherical. 

 The Rayleigh length is the distance (from the waist) where the beam area is twice the beam area 
at the waist (the radius is  2 times bigger). This parameter is useful to define a “collimated” 
beam : over this length, the beam size is nearly constant (between w0 and w02 ) - see figure 
11. 

 

Exemple : Order of magnitude :
For a tightly focused laser  beam (w0 = 10 µ) and a 1 µm wavelength, we find ZR = 314 µm and a 
divergence (half-angle) of 1,8 degrees. 
If we consider a “big” waist (1 mm), we find ZR = 3,14 m and a divergence (half-angle) of 0,018 degrees. 
We then obtain a so-called “collimated beam”. 
 

 

Fondamental 
The divergence of a Gaussian beam is inversely proportional to the size of its waist. In the framework of 
Gaussian optics, “collimating a beam” is the same thing as “having a big waist”. 
We observe on figure 12 the evolution versus z of the Rayleigh length and of the divergence for a 1 µm 
 

 Figure 11 : Properties of a Gaussian beam 
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 b) Other useful relations

Some very practical relations could be deduced from the previous ones, as for example : 
 
 

 
 

and
 
 

 
 

Those relations are used to find the waist size and its position starting for experimental measurements of 
R and w. 

 4. Gaussian beams focusing and mode matching

A very common experimental action is to modify a Gaussian beam with a lens. For example, if one want 
to inject  a  given pump laser  beam in another laser  cavity,  it  is  crucial  that  the beam “matches” the 
resonator of this last laser. 
When passing through a lens, a Gaussian beam is turned into another Gaussian beam : let's see how. 

 Figure 12 : evolution of the Rayleigh length and of the divergence versus z, for a 1 µm wavelength 

w0
2= w 2

1w2

 R 
2

z= R

1  R
w2 

2

24



Lesson

By using the ABCD law (see corresponding paragraph) applied to a centred optical system (with the focal 
point set as the origin), one can find the relations between positions and sizes of the waists before and 
after the optical system. 
The “object waist” wo is located at the abscissa   relatively to the object focal point, whereas the “image 
waist” w'o is located at the absciss   '  with respect to the image focal point (see figure 13). 

 

Remarque 
The notion of “object” and “image” waist is in fact not rigorously applicable here, because those two 
points are not conjugated. In other terms, the waist of the image beam is not the image of the waist of the 
object beam. We will nevertheless conserve this practical notation in the following. 
 

The complex radius of curvature corresponding to the object waist is imaginary : 
 
 

 
 

The transfer matrix elements of the optical system are (check it !): 
 
 

 
 

 

 

By applying the ABCD law, and using the fact that qo and q'o are both imaginary, we find the following 
relations : 
 
 

 
 

or in a different form : 
 
 

 
 

Those relations show that the position of the image waist depend not only on the position of the objetc 
waist, but also on its size. In the same way,  the size of the image waist is a function of the size and 
position of the object waist. 

 When ≫ZR , the waive around the focal point is nearly spherical (far field). From the lens 
point of view, the wave seems to come from a single point, and we have  '=ff ' . This is the 
Newton conjugation relation we used to see in classical geometric optics. 

 Figure 13 : Transformation of a Gaussian beam 

q0=i
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2



A=−
'

f ' ; B=− f
'
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 Another special case is =0 , that is the object waist is located on the focal point of the lens. In 
ray optics, we expect a collimated beam (parallel rays) after the lens. With Gaussian beams, we 
have   '=0  : the image waist is located on the image focal point. 

 

Attention 
It is clear that the “conjugation relations” are very different in classical or Gaussian optics, especially 
around the focal points. However, we have to remind that the term “conjugation relation” has not the 
same meaning here and in geometric optics. 
 

The relation of magnification between waists is given in this case by : 
 
 

 
 

This relation is very important from the experimental point of view. Indeed, this is a very common 
configuration (focusing/collimation or the opposite). This relation gives a good order of magnitude to 
answer the following question : “what will be the size of the laser spot after focusing a nearly collimated 
beam with a lens (focal length f) ?” 
 

 

 Figure 14 : Evolution of the image waist position as a function of the object waist position (for different  
sizes of the object waist) 

w0
'=  f
w0
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After observation of the figures 14 and 15 (illustrating the equations above), one can make the following 
comments : 

 On the figure 14, when the size of the object waist is large, we have  '=0  for every value of   
  : this is the geometric optics case, when a collimated beam is focused in the focal plan of a 

lens. The position of the object waist is not well-defined here as the Rayleigh distance is very big 
(“collimation” for large values of w). 

 When the object waist size is very small, the observed behaviour is also similar to geometric 
optics, with asymptotic limits given by  '= f 2 . 

 Besides those two cases, the difference with geometric optics is huge : for w0 =10 µm and =0  
small object waist located in the focal plane of the lens), the image waist is in the image focal 
plane, and not positioned to infinity as we learn from ray optics! 

 This “paradox” is explained by the figure 15 : for w0 =10 µm and  =0  , the image waist is 
actually in the image focal plane but its size is very big : the beam is quasi-collimated and we find 
a behaviour similar to what is expected from geometric optics. 

 D. Fundamental Gaussian mode and laser resonator

 1. ABCD law and Gaussian beams

For a stable cavity mode, the transverse structure of the beam as well as its phase (modulo 2 pi) remains 
the same after a round trip in the resonator. 
More precisely, the complex radius of curvature q(M) has to be conserved whatever the M point may be. 

 Figure 15 : Evolution of the image waist size as a function of the object waist position (for different sizes 
of the object waist) 
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In other words, if T M = A B
C D is the transfer matrix with M chosen as the origin (be careful, T(M) 

is different for each M !), we must have for every M (ABCD law) : 
 
 

 
 

This is a general condition that could be applied to every resonator. 
If  we identify the real  and imaginary parts  of  this  relation,  we obtain two equations  that  define  the 
geometry of  the  system (particularly  the  waist(s)  position)  and  the  resonant  frequency of  the  cavity 
respectively. 
The stability condition is also a consequence of the ABCD law. We could actually write : 
 
 

 
 

or
 
 

 
 

thus
 
 

 
 

but 1/q is also equal to 
 
 

 
 

The beam could only exist if w is finite. The imaginary part of 1/q should consequently be different from 
zero, which means that (D-A)²+4BC has to be strictly negative. 
The T matrix being unitary, we have AD-BC = 1 and the condition could be written : 

DA24  that is −1 AD
2
1  or 0 AD2

4
1  

We find again the stability condition previously demonstrated in the framework of ray optics, but here it 
is important to notice that the inequality is a strict one : the limits are excuded, which means that the cases 
where ∣AD∣=2  are unstable resonators for Gaussian beams. 
The ABCD law also defines the Gaussian beam characteristics in M : 
 
 

 
 

and
 
 

 
 

M is often positioned at a cavity waist (R = infinity). We then have A=D in T(M). Inversly, if we find 

q M =
A q M B
C q M D

Cq2D−Aq−B=0
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2
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q
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1
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1
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1
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1
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A=D then it means that M was located at a cavity waist. 

 2. Two-mirrors resonator

 a) Introduction

We will discuss in details in this part the classical and very common resonator made of two spherical 
mirrors (radii of curvature R1 and R2, separated by a distance d) 

 b) Resonator geometry

If a Gaussian beam is a mode for such a resonator, then its radius of curvature at the mirrors position 
matches the radius of curvature of the mirrors. This condition is necessary to insure that the beam returns 
the same way after bouncing on one mirror. 
Let z1 and z2 be the M1 and M2 mirrors positions respectively : we have then R(z1) = -R1 et R(z2) = R2. 
 

Remarque 
The conventions used for the radii's signs are important : here we take R>0 for a diverging wave and R<0 
for a converging wave, the positive direction being oriented from left to right (see figure 16). 
 

 

 

We can then make use of this characteristic to determine the mode geometry inside the cavity without 
using the  general  ABCD law :  we only need to  apply the  relations  we already demonstrated in  the 
“Gaussian spherical wave” paragraph, with the origin located at the waist. 
We then write the two conditions on the mirrors : 
 
 

 
 

and
 
 

 Figure 16 : Geometry of the two-mirrors cavity 

−R1=R z1=z1[1w0
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We also have z2−z1=d . We then just need to solve this 3 equations / 3 unknowns (z1, z2 and ZR) system 
to obtain their values as a function of the distance d between the mirrors and their radii of curvature. 

If we do the whole calculation (do it as an exercise !), and with  g i=1− d
Ri

 (i=1,2), we come to the 

following relations : 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 We can find here again the stability condition for a two-mirrors resonator, namely  0g1 g21  with 
strict inequalities this time. 
To generalize the stability diagram shown on figure 7 so that it could be applied to Gaussian beams, one 
then need to exclude the hyperbola itself as well as the gi = 0 axis.
The simplest example is the Fabry Pérot resonator, made of two facing plane mirrors. As the A and D 
matrix elements are equals to unity, we have g1 = g2 = 1: the stability condition is verified in ray optics, 
but not for Gaussian beams. 
Nevertheless,  it  is  possible  to  obtain  stable  laser  operation  with  such  a  cavity,  as  some  other 
elements could stabilize the resonator. For example, the amplifying medium itself often acts as a 
converging lens under pumping (thermal lensing). 

 c) TEM00 modes frequencies

A mode could resonate if the field is the same after a round trip inside the cavity. In other words, the 
phase variation along this round trip has to be equal to a multiple of 2 ; 
The phase term for a gaussian spherical wave is  e−ikz e i z  (see the corresponding paragraph) where 
tan=z / Z R .  The first  exponential  term is  simply the  phase shift  due to  propagation,  whereas  the 

second one is a specificity of Gaussian beams. 
If  z  is the phase at the abscissa z, we should have : 
 
 

 
 

q is  here  an integer  equal  to  the number  of  half-wavelengths  over a distance d (nothing to  do with 
complex radius of curvature here !): there is (q-1) nodes et q antinodes in the cavity (NB : for standard 
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2
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cavity lengthes (between one centimeter and one meter), q is a huge number !) 
The resonant frequency of TEM00q Gaussian modes in the cavity are consequently (replace k by 2/c
) :
 
 

 
 

This expression could be written differently thanks to 
 
 

 
 

that is (after some calculations) : 
 
 

 
 

 

Remarque 
g1 and g2 have the same sign because of the stability criterion. If this sign is positive, one should take the 
+ sign in the formula, and vice-versa. 
 

A very similar formula was given for a plane wave in the “longitudinal and transverse modes” paragraph : 

however we have here an additional  term  
c

2d
[ 1


arccos±g1 g2] .  This term is  added for each 

frequency, so that we still have : q=c /2d .
The previous study was performed in the simple case of the two-mirrors linear cavity. For more complex 
resonators (see figures 17 and 18), we have to calculate the phase variation for each Gaussian beam 
during a round trip. 

 3. Other resonators

The detailed calculation was done for the two-mirrors cavity. In numerous cases, this geometry is not the 
best choice to get the desired laser. 
Three-mirrors cavities (see figure 17) are widespread : it is possible for example with such resonators to 
benefit from a collimated beam in one branch of the cavity, which is very useful when one wants to add 
optical elements inside the resonator (Lyot filter, polarizing optics...) 
It could also be desirable to have two waists in the resonators, with different sizes : one is used to put the 
amplifying medium, the other for example for a saturable absorber (Q-switch laser operation) or a non-
linear crystal (frequency mixing). 4-mirrors geometries such as the one depicted on figure 17 are then a 
good choice. 
Finally,  one can imagine intricate cavities with several laser and/or non-linear crystals to mix several 
wavelengths ( figure 18 is a beautiful example ) : the only limit is in laserist's minds... 
 

q=
c

2d
[q 1

 arctan 
z2

Z R
−arctan 

z1

Z R
]

arctan a arctan b=arctan ab
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q=
c

2d
[q 1


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 E. High order modes
 

We considered in  the  previous  sections  a  single  solution of  the  paraxial  wave equation,  namely the 
fundamental Gaussian mode. Other solutions, mathematically forming an orthonormal and complete base, 
exist. Each oscillation in the resonator is a linear combination of those modes. Their transverse structures 

 Figure 18 : Intricate laser resonator : an example 

 Figure 17 : Different laser resonator geometries 
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have a rectangular, cylindrical, or a mix of them symmetry : it is mainly defined by the mirrors shape 
(rectangular or circular). This structure is in general strongly affected by other perturbations and cannot 
be observed so easily. 
 

 1. Hermite-Gaussian Modes

 a) Electromagnetic field structure

Let's start with the modes having a rectangular geometry in a Cartesian coordinates system. 
We can then write a solution of the wave equation as follows : 
 
 

 
 

where g (respectively h) is a function of z and x (respectively z and y). 
The insertion of this solution inside the paraxial wave equation leads to a differential equation for g and 
h : the solutions of this equation are Hermite's polynomials. 
One can show (not demonstrated here) than a complete set of solutions is : 
 
 

 
 

where : 
 m, n are integers 
 q, R et w were already defined for Gaussian beams (no change) 

  z =mn1arctan  z
w0

2   

 H m X =−1m e X² ∂m

∂ X m e−X²=m!∑
p=0

m
2

−1p 2Xm−2p

p ! m−2p !
:m-order Hermite ploynomials 

 As an example : H0(X) = 1, H1(X) = 2X, H2(X) = 4X²-2 etc.
 For m = n = 0, we have the fundamental Gaussian beam. 
 For any m and n, the propagation law for R, q and w remains the same. Only the phase shift and 

the transverse beam structure differ. 
The figures 19 and 20 depict the intensity pattern for those modes. One can notice some “zeros” for the 
intensity (dark lines) : their number correspond to the order m. 
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 b) Frequency spectrum for a two-mirrors resonator.

The phase-shift after one round trip in a two mirrors resonator has to be equal to p times  2 (p is an 
integer). Starting from the phase expression  e−i kz−z   and using the same method as in paragraph “ 
TEM00 mode frequencies” we obtain the following expression for the frequency of the TEMmnq mode: 
 
 

 
 

gi = 1-d/Ri was previously defined for a two-mirrors cavity (length d, radius of curvature R). m=n=0 of 
course leads to the same expression as before for the fundamental Gaussian beam. 
The frequencies depend on the values of the radii of curvature : 

 For an almost plano-plano configuration (R1 = R2 >> d) : 

 Figures 20 : Spatial energy distribution for Hermite-Gaussian modes. (3D presentation) 

 Figure 19 : Spatial energy distribution for Hermite-Gaussian modes. 

mnq=
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2d
[ q 1


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The  arccos  term becomes  arccos  (g)  and  g  is  almost  1  so   :  arccosg ≈2d
R ≪1 .  The  mnq

frequencies are very close from 00q frequencies. The spectral intervalle  for m=1 or n=1 is 

equal to 1
  2d

R  c
2d

(around some tens of MHz). 

 For a quasi-confocal symmetrical resonator (R1 = R2 = d) the spectral gap between consecutive 
modes is c/4d and the frequencies are degenerated (a longitudinal mode and some transverse 
modes have the same frequencies). 

 2. Laguerre-Gaussian Modes

If the resonator symmetry is mostly circular, the modes exhibit a cylindrical symmetry described by the 
Laguerre polynomials. The mathematical method is the same as the one described for Hermite-Gaussian 
modes. The figure 21 describe the intensity distribution for such modes. 
 

 

 3. Multimode beams propagation and M² factor.

The spatial extension of any given mode is always bigger than the fundamental mode one. We can then 
define a M coefficient, greater than one, such as : 
 
 

 
 

where wmn et w00 are  the  waists  of  the  observed  beam and  the  fundamental  beam,  respectively.  By 
injecting this equation in the complex radius of curvature definition, we obtain : 
 
 

 Figure 21 : Spatial energy distribution for Laguerre-Gaussian modes. 

wmn z =M w 00  z 

1
q  z 

= 1
R z 

−i M² 
wmn

2
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All the previously demonstrated formulae are then the same, but with  M²  instead of   everywhere. 
For M²=1, we obviously find the relationships obtained for the fundamental Gaussian mode. 
The« M² factor» is a kind of measurement of the “degradation” of the beam quality compared to the 
fundamental Gaussian beam, taken as reference. 
 

Définition 
More precisely, M² could be experimentally defined by the following sentence : “for a given waist, the 
measured divergence of the studied beam is M² times bigger than the divergence of the fundamental 
Gaussian beam” or : 
 
 

 
 

where /w0  is the divergence of a TEM00 mode with the same waist as the observed beam. 
 

Practically, high order Hermite or Laguerre beams are rarely observed. It is however frequent to deal with 
“single-lobe” beams with a quasi circular shape and Gaussian-like energy distribution : the M² factor 
characterize in this case “how far” from a TEM00 you are : it is a measure of the difference between a real 
beam and the theoretical limit given by the diffraction. 
From an experimental point of view, the principle of the measurement is as follows : one had to measure 
the divergence of the beam together with the waist w0, and then compare the result to  /w0 : the ratio 
will give M². 
Technically, you have to focus the studied beam with a converging lens, and then to measure the size w of 
the beam for different positions along the z-axis with any suitable method (camera imaging, measure of 
the  energy percentage passing through an iris...).  You will  finally obtain a  curve similar  to  the  one 
depicted on the figure 11 : you can fit this curve with the formula that gives w(z) (with the M² factor of 
course set as the free parameter), 
The beams produced by He-Ne lasers or low power diode pumped solid state lasers are usually diffraction 
limited (M²=1.1 or less). For high power lasers (for example flash-pumped Nd:YAGs), the transverse 
structure is often heterogeneous and the M² factor easily reaches values between 2 and 10. The beams 
could also sometimes  suffer  from astigmatism,  so that  the M² factor is  not  the same in the x and y 
directions. Finally, for non-Gaussian beams (for example beams from high power laser diodes) we can 
have M² factors values above 50, even if the physical signification of this widely used parameter has to be 
discussed in this case... 
 

* *

*

The resonators study is a necessary first step for any laser realization. In this course, we only described 
simple passive structures : for more complex systems, several software have been developed to easily 
simulate any type of cavity without carrying simple but painful calculation. It is then possible to take into 
account some more complex effects such as : 

 influence of the finite size of the mirrors : the diffraction plays a key role if the mirrors are very 

small. In this case the relevant term is the Fresnel' s number N=
a1 a2

d
 where a1 and a2 are the 

cavity mirrors radii (not the radii of curvature !).  If N >>1, you could neglect the diffraction 

=M² 
w0

=M² 00
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effects. 
 Astigmatism for the off-axis systems (as V-shaped cavities for example) 
 Influence of the amplifying medium (active cavity) : heating effects, dynamic behaviour... 
 Polarization effects 

For a more complete review on the topic I suggest the following references : [ [1]  , [2] ]
 
 

37





 

II - Case study II
 

 

Preliminary study of the hemispheric resonator 40

“Real life” resonator 43

Longitudinal and transverse modes 47
 

 
 
 

The aim of this part is to study in practical terms a classical laser resonator such as the one described in 
the course “principle of laser”. This study is also useful to apply the notions of the present course to a 
“real” case. 
Let us remind the geometry of the resonator and the different parameters we will use during the study : 

 a Nd:YAG crystal (length l=10 mm, refractive index n=1,8) is the amplifying medium in a two-
mirrors linear cavity. 

 One mirror is directly coated on the crystal (this mirror is obviously a plane mirror) : the coating 
is HT (High Transmission) at the pump wavelength (808 nm), and HR (High Reflection) at the 
laser wavelength (1064 nm). Let A1 be the reflection coefficient around 1064 nm : A1 is close to 
unity.  This  mirror  is  made  from a  high  number  of  very thin  layers  of  low and  high  index 
materials: with this type of “dielectric coating”, almost every spectral shape could be given to the 
reflection coefficient. 

 The other mirror has a radius of curvature R and is used to close the cavity. Its coefficient of 
reflection at 1064 nm (A2) is below unity to let the laser beam escape from the resonator. 

 The distance between the uncoated end of the crystal and the output coupler is L. The total length 
of the resonator is consequently L+l (see figure). 

 

 
 

 Figure 1 : Scheme of the laser 
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 A. Preliminary study of the hemispheric resonator

 1. Stability

Let us write the ABCD matrix for a round trip, 
which could be broke up as follows (see figure 2) : 

 a first path in air, over a distance L 
 a path in the crystal (refractive index n) over a distance l 
 The reflection on the plane mirror (no impact on the calculation) 
 Again, one path in the crystal and another in air. 
 Finally the reflection on the output coupler (radius of curvature R) 

 

 

The unfolded cavity is presented in the figure 3 and correspond to the following sequence of matrices (the 
order is important !): 
 
 

 
 

 

 

with d = L + l/n to make the notations lighter, we find after simple calculations : 
 

 Figure 2 : scheme of the resonator 

 Figure 3 : unfolded cavity 

T= 1 0
−2
R

11 L
0 11 l

n
0 1 1 l

n
0 11 L

0 1
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The resonator is stable if 0 AD2
4

1 or : 

01−d
R
1  as d/R is obviously positive so the condition reduces to : 

dR  soit en reprenant les notations de base LR− l
n  

 

Remarque 
For an “empty”  cavity (without  crystal),  with a length Leq,  the stability condition was defined in the 
course  as  0g1 g21 .  As g1=1−Leq /Rplan=1  because  Rplan is  equal  to  infinity,  the  condition 

becomes g2=1−
Leq

R
0  or LeqR . 

From the stability point of view, the real cavity with the crystal is then equivalent to an empty cavity with 

an equivalent length Leq=d=L l
n .

 

 

Attention 
The equivalent length does not correspond to the optical length L+nl ! 
 

Let's go back to our resonator : any couple (radius of curvature R – length L) is suitable as soon as the 

condition LR− l
n is verified. From a practical point of view, other considerations such as the optimum 

size of the waist inside the crystal will impact this choice. Moreover, we generally do not have in the lab 
an infinite choice for the radii of curvature of the mirrors ! 
For the moment, let us pick in the lab a mirror with appropriate coatings and a radius of curvature R = 
100 mm. 
The length L must then be shorter than 100-10/1,8 ≈ 94,5 mm. 
We will take for example in the following L = 80 mm. 

 2. Beam profile inside the resonator

We have fixed the cavity length to keep it stable. Now we will look in details at the beam profile inside 
the resonator. 
We already know that the waist will be located on the plane mirror : the beam has to bounce back on 
itself. 
Let us first determine the size of the beam on each mirror (w0 on the plane mirror and w1 on the spherical 
one), as well as the beam's divergence and the associated Rayleigh length ZR : 

A simple approach is to work with the equivalent resonator (see above), with a length Leq=d=L l
n .

If z=0 is taken on the plane mirror, we can write that for z = d (that is on the spherical mirror) the radius 
of curvature of the laser beam is the same as the radius of curvature of the spherical mirror (to ensure that 
the beam bounces back on the same way). But we know how R varies with z (see course), so that we can 

T= 1 2d
−2
R

1−4d
R 
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write : 
 
 

 
 

we then easily deduce that : 
 
 

 
 

with d = L+l/n = 80+10/1,8 = 85,5 mm and R = 100 mm, we obtain : 
ZR = 35,2 mm and w0 = 110 µm (the wavelength is 1064 nm) 

The divergence is =

w0

 which is equal to 3 mrad. 

To obtain the beam waist on the output coupler, we only need the following formula : 
 
 

 
 

which leads for z=d to : 
 
 

 
 

or w1 = 286 µm. 
The beam profile inside the resonator is consequently depicted on figure 4 : 
 

 

 Figure 4 : beam profile inside the resonator 

R=R z=d =d [1w0
2

d 
2]=d [1 Z R

d 
2]

Z R=d R−d =
w0

2



w  z =w01  z
w0

2
2

w1= R
  d

R−d 
1
4
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 B. “Real life” resonator

 1. Optimisation of the cavity

We have obtained in the previous paragraph the characteristics of the beam for a specific value of L. 
In most  cases,  the pumping conditions impose a given value for  the waist,  and consequently fix the 
resonator geometry,  For example, in the course entitled “principles of lasers”, the pumping geometry 
(through the use of a 1 x 100 µm laser diode) leads to a fixed value for the pumping waist : it is focused in 
this specific case on a 20 x 100 µm spot. To simplify the calculations, we will here suppose that this spot 
is circular (which is the case when using fiber coupled laser diodes) with a 80 µm radius inside the laser 
crystal. 
A crucial point is to match the laser mode with the pump mode size : we will try to get a laser mode size 
compatible with the pump spot size. More precisely, we will choose a laser mode slightly smaller than the 
pump mode, in order to benefit for an homogeneous pumping over all the laser mode area. 
As an example, we will then try to have w0 = 60 µm.
 

Remarque 
A more detailed analysis to obtain the optimal mode-matching is beyond the scope of this course. 
 

What is the length L in this case (always with our R=100 mm output coupler) ? 

With the formula Z R=d R−d =
w0

2


 , we get a trinomial : 

d 2−dRw0
2

 
2

=0  Solving this trinomial gives two values for d : 

d1 = 98,85 mm and d2 = 1,14 mm.
Of course only the first solution makes sense (for the other one, L is negative) and leads to L = 93,3 mm. 
We are still in the stability zone, but near the frontier. 
We can plot (figure 5) the evolution of the waist w with L for a given value of R (here 100 mm). Of 
course for L>R the resonator is unstable and we cannot define any waist. 
There is a zone for L around R/2 = 50 mm where the waist stays almost constant. We also notice that with 
our output coupler, it is not possible to get a laser waist bigger than 130 µm. On the other hand, we can 
have very small waists near the stability limit. 
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 2. Output beam

From the experimentalist point of view, an interesting point is the profile of the beam outside the cavity, 
after the output coupler. 
The outcoupling mirror is only partially reflective, and has a spherical side (inside the cavity, coated) and 
a plane one (outside the cavity, uncoated : this is just the rear face of the glass substrate). 
 

 

 Figure 6 : Output coupler 

 Figure 5 : Evolution of the waist with L 
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The output coupler consequently acts as a diverging lens for the escaping laser beam. 
Its focal length f' is given by the following formula (see a course on ray optics) : 

1
f '
=nM−1 1

R '
− 1

R  with R' = infinity and nM the refractive index of the substrate. 

We have then f '= R
1−nM 

,or with nM = 1,5 (glass) : f' = -200 mm. 

We calculated the beam divergence inside the cavity. But what is the result outside the cavity, for the 
useful beam ? 
Let us have a look on the new complex radius of curvature after the output mirror (that is after a diverging 
lens with a focal length f'), and apply the ABCD law : 

q after = A qbefore B
C q beforeD  where q(before) is the complex radius of curvature before the mirror and 

q(after) is the complex radius of curvature after passing through the same mirror, 
The ABCD coefficients are those of a simple lens transfer matrix : 
 
 

 
 

we then deduce that : 
 
 

 
 

NB : this expression is often useful when one had to transform a Gaussian beam through a lens. 

We also have 
1

q before
= 1

R
−i 
w1

2  and 
1

q after 
= 1

R '
−i 
w1

2  ( we suppose that the lens is a thin 

lens, so that the size of the beam does not change between the two faces of the lens). 
We consequently have after identification R '=R/ nM .
We remind the following formula : 
 
 

 
 

with the new value of R', we find the “effective” waist for the beam outside the cavity : 
 
 

 
 

With the value of w1 (see above) : w1= R
  d

R−d 
1
4  we find : 

 
 

T= 1 0

− 1
f

1
1

q after 
= 1

qbefore 
− 1

f '

w0
2= w 2

1w2

 R 
2

w ' 0
2=

w1
2

1w1
2nM

R 
2
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as we also have w1=w01 d 2

Z R
2  and Z R=d R−d  we obtain : 

 
 

 
 

So that the new divergence    ' is given by : 
 
 

 
 

From a numerical point of view, the divergence after the output mirror is 1,438 bigger than the divergence 
inside the resonator (for d=85,5 mm – see figure 4) that is 4,3 mrad. 

 3. Thermal lensing effects

Let us get closer to real life : during the pumping, a lot of energy is gathered on a very small area inside 
the crystal.  This leads to local heating, and as the refractive index varies with temperature, an index 
gradient appears. In the same time, the thermal dilatation of the crystal leads (in most cases) to a kind of 
bulge of the crystal. This last effect transforms for example the plane mirror into a spherical one. 
The index gradient  could be simulated in a  first  approximation by a  converging (in  most  cases,  but 
sometimes it could be a diverging one) lens positioned at the pump focusing point inside the crystal. 
We will not here perform the calculations : it is fastidious and does not add anything to the lesson as the 
principle is exactly the same as before (but with more lenses inside the cavity !) Fortunately, this kind of 
matrix calculation is a very simple game for computers and several software (some of them are even 
free !) exist on the market. 
We  can  then  get  as  close  as  possible  to  real  resonators  (other  points  can  be  taken  into  account  : 
absorption, polarization...) and accurately predict the beam characteristics before building the laser. 

w ' 0
2=

w1
2

1 dnM
2

R−d 

w ' 0
2=

R w0
2

RnM
2 −1d

 '
 =

w0

w ' 0
=1nM

2 −1 d
R
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 C. Longitudinal and transverse modes

 1. Longitudinal and transverse modes

We will in this final part calculate the frequencies of the longitudinal modes of the resonator : the phase 
shift for a single pass in the resonator is equal to (see course) : 
 
 

 
 

with k=2 
c , D the optical path (D=L+nl) , tan0=0 , and tand = d

Z R
= d

R−d  .

Consequently : 
 
 

 
 

and for the transverse modes : 
 
 

 
 

We find with L = 80 mm a 1,5 GHz gap between two consecutive longitudinal modes and 575 MHz 
between the fundamental mode and the first transverse mode (see figure 7). 
 

Remarque 
For a lasing wavelength in the near infrared (1064 nm), this leads to a value of q around 1,195.108.

 

 
 
 

 Figure 7 : Modes of the laser 

=d −0=−k D [d −0]=−q

q=
c

2D
[q 1

arctan d
R−d ]

mnq=
c

2D
[qmn1

 arctan  d
R−d ]
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 A. Laser beam transformation

We want to use a thin lens in order to focus a collimated beam (radius 1 mm, from an He-Ne laser, 
wavelength = 633 nm) so that the Rayleigh length is 30 mm. 

Question 
[Solution n°1 p 51]

What focal length should have the lens ? 

 B. Laser beam characteristics

Let us work with an “hemiconfocal” resonator with an effective length d, made of two mirrors (one is 
plane, the other has a R=2d radius of curvature) 

Question 1
[Solution n°2 p 51]

Show that this resonator is stable. 

Question 2
[Solution n°3 p 51]

What are the geometrical characteristics of the laser beam inside the cavity (waists on each mirrors, 
Rayleigh length, divergence) ? 

 C. Stability

A resonator is composed of two mirrors, one concave and one convexe, with radii of curvature 1,5 m and 
-1m respectively. The distance between them is d. 
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Question 
[Solution n°4 p 52]

In what range could we choose d so that the cavity remains stable ? 

 D. Energy

A given Gaussian laser beam is characterized by its waist w. 

Question 
[Solution n°5 p 52]

What is the percentage of energy transmitted through a circular aperture having a radius  and centered 
on the beam? 
Numerical application : =0,5 w ;=0,75w ;=w ;=2 w  

 E. Spectral distribution of the longitudinal modes

We have an He-Ne laser, with a 20 cm long cavity, lasing at 632,8 nm. 

Question 1
[Solution n°6 p 53]

What is the frequency (and wavelength) gap between two consecutive longitudinal modes ? 

Question 2
[Solution n°7 p 53]

We want to use a spectral filter with a bandwidth of 1 nm. What value shoud we choose for the cavity 
length to select one (and only one !) longitudinal mode with this filter ? 
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> Solution n°1 (exercise p. 49)
 

We want Z R=
w ' 2

 =30mm  which means for a 633 nm wavelength : 

w '=78µm  
We know that in this particular case (when one of the waists is located on the focal point of the lens) we 

have w '=  f
w  

Then 
 
 

 
 

 

> Solution n°2 (exercise p. 49)
 

The stability condition for a two mirrors resonator is : 
 
 

 
 

with here g1=1− d
R plan

=1 ; g 2=1− d
R  

The condition then becomes dR  and is always true since R=2d. 
 

> Solution n°3 (exercise p. 49)
 

 
 

 
 

because the wavefront radius of curvature on the mirror has to be equal to the mirror radius of curvature 
Consequently 

Z R=d=
w0

2

 ;w0= d


 and =

w0

.

 

f =w w '


=387mm.

0g1 g21

R=2d=d 1
Z R

2

d 2 
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> Solution n°4 (exercise p. 50)
 

The stability condition for a two mirrors resonator is : 0g1 g21  

which could also be written 0R1−d R2−d R1 R2  
and finally : 
 
 

 
 

 

> Solution n°5 (exercise p. 50)
 

The intensity profile is Gaussian  : 
 
 

 
 

and r goes from zero to infinity. 
The fraction of energy F passing through a circular aperture with a radius  is
 
 

 
 

with dS=2 r dr  
If we rplace I(r) by its Gaussian expression, we obtain after simplification 
 
 

 
 

We can easily calculate this integral (using the variable t=r²) : 
 
 

 
 

Finally we find : 
 

 

 
 

Numerically speaking : 
r/w = 0,5 leads to F = 0,39 
r/w = 0,75 leads to F = 0,67 
r/w = 1 leads to F = 0,86 

R1R2=0.5 md1.5 m=R2
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w 
2

52



Annexes

r/w = 2 leads to F = 0,999
 

Complément 
If the radius of the aperture is equal to the beam waist, only 86% of the energy is transmitted. This is 
because of the definition of the beam waist : it is the radius of the beam when the intensity is 1/e² of its 
maximal value. All the energy contained in the “wings” of the Gaussian is consecutively lost with this 
aperture. 
We also see with the above calculation that we need an aperture twice as large as the beam waist in order 
to get all the energy transmitted. 
 

 

> Solution n°6 (exercise p. 50)
 

 
 

 
 



=


 then =1 pm  
 

> Solution n°7 (exercise p. 50)
 

We want that 0,5nm  which can be written =
c
2 3.75.1011 Hz .

We deduce from this equation that L has to be less than 0,4 mm. 
 

 

q=
c

2L
=3.108

0,4
=750 MHz
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